plotMissingValuesHeatmap.Rd
Create a heatmap of the data matrix, indicating which values are missing and observed, respectively.
plotMissingValuesHeatmap(
sce,
assayMissing,
onlyRowsWithMissing = FALSE,
settings = "clustered",
...
)
A SummarizedExperiment
object.
Character scalar indicating the name of a
logical assay of sce
representing the missingness pattern.
FALSE
entries should represent observed values, while
TRUE
entries represent missing values.
Logical scalar indicating whether to only
include rows with at least one missing (TRUE
) value.
Character scalar or NULL
. Setting this to
"clustered"
creates a heatmap with rows and columns
clustered (used in the einprot
report).
Setting it to NULL
allows any argument to be passed to
ComplexHeatmap::Heatmap
via the ...
argument.
Additional arguments passed to ComplexHeatmap::Heatmap
.
A ComplexHeatmap
object.
sce <- importExperiment(system.file("extdata", "mq_example",
"1356_proteinGroups.txt",
package = "einprot"),
iColPattern = "^iBAQ\\.")$sce
SummarizedExperiment::assay(sce, "iBAQ")[
SummarizedExperiment::assay(sce, "iBAQ") == 0] <- NA
SummarizedExperiment::assay(sce, "missing") <-
is.na(SummarizedExperiment::assay(sce, "iBAQ"))
plotMissingValuesHeatmap(sce, "missing")