plotMissingValuesHeatmap.RdCreate a heatmap of the data matrix, indicating which values are missing and observed, respectively.
plotMissingValuesHeatmap(
sce,
assayMissing,
onlyRowsWithMissing = FALSE,
settings = "clustered",
...
)A SummarizedExperiment object.
Character scalar indicating the name of a
logical assay of sce representing the missingness pattern.
FALSE entries should represent observed values, while
TRUE entries represent missing values.
Logical scalar indicating whether to only
include rows with at least one missing (TRUE) value.
Character scalar or NULL. Setting this to
"clustered" creates a heatmap with rows and columns
clustered (used in the einprot report).
Setting it to NULL allows any argument to be passed to
ComplexHeatmap::Heatmap via the ... argument.
Additional arguments passed to ComplexHeatmap::Heatmap.
A ComplexHeatmap object.
sce <- importExperiment(system.file("extdata", "mq_example",
"1356_proteinGroups.txt",
package = "einprot"),
iColPattern = "^iBAQ\\.")$sce
SummarizedExperiment::assay(sce, "iBAQ")[
SummarizedExperiment::assay(sce, "iBAQ") == 0] <- NA
SummarizedExperiment::assay(sce, "missing") <-
is.na(SummarizedExperiment::assay(sce, "iBAQ"))
plotMissingValuesHeatmap(sce, "missing")