Skip to content

Using ez_zarr to explore individual OME-Zarr images

Silvia Barbiero, Michael Stadler, Charlotte Soneson

Goal

The aim of ez_zarr is to provide easy, high-level access to microscopy data, stored in OME-Zarr format according to the NGFF specifications.

In addition to the python package, we also provide an R package that automatically generates and wraps a python environment with ez_zarr and all dependencies, available at https://github.com/fmicompbio/ezzarr.

The ome_zarr.Image class represents an individual image and provides methods to obtain metadata, extract image or label arrays and visualize these. Below we illustrate the use of ome_zarr.Image objects by examples.

Using ome_zarr.Image objects

Note: If you prefer to run these examples interactively, you can also download them as an ipynb notebook.

Here are some examples of how you can use ome_zarr.Image objects defined in ez_zarr:

Download example data

To run the code below, you will first need to download some image data. You can do this for example by running the following from a terminal:

# Download small Fractal output from Zenodo
curl -o temp.zip https://zenodo.org/records/10519143/files/20200812-CardiomyocyteDifferentiation14-Cycle1_mip.zarr.zip

# Unzip and remove the temporary zip file
unzip temp.zip
rm temp.zip

or directly from within a python notebook or session using:

import requests
import zipfile
import os

# for info on data see: https://zenodo.org/records/10257149
url = 'https://zenodo.org/records/10519143/files/20200812-CardiomyocyteDifferentiation14-Cycle1_mip.zarr.zip'

# download
response = requests.get(url)
with open('temp.zip', 'wb') as temp_zip:
    temp_zip.write(response.content)

# unzip to current directory
with zipfile.ZipFile('temp.zip', 'r') as zip_ref:
    zip_ref.extractall('.')

# clean up
os.remove('temp.zip')

Load packages

import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import numpy as np
from skimage import color

from ez_zarr import ome_zarr, plotting, utils

Open OME-Zarr file set

We open a single OME-Zarr image:

img_directory = '20200812-CardiomyocyteDifferentiation14-Cycle1_mip.zarr/B/03/0'
img = ome_zarr.Image(path = img_directory, name = 'cardio-d14')
img
Image cardio-d14
  path: 20200812-CardiomyocyteDifferentiation14-Cycle1_mip.zarr/B/03/0
  n_channels: 1 (DAPI)
  n_pyramid_levels: 5
  pyramid_zyx_scalefactor: [1. 2. 2.]
  full_resolution_zyx_spacing (micrometer): [1.0, 0.1625, 0.1625]
  segmentations: empty, nuclei
  tables (measurements): FOV_ROI_table, expected_table_FOV_ROI_table_1_False_0_0, expected_table_FOV_ROI_table_1_True_0_0, expected_table_masked_nuclei_ROI_table_0_True_0_0, expected_table_masked_nuclei_ROI_table_1_True_0_0, expected_table_well_ROI_table_0_True_0_0, expected_table_well_ROI_table_3_False_0_0, expected_table_well_ROI_table_3_True_0_0, nuclei, nuclei_ROI_table, well_ROI_table

img represents a maximum intensity projection of one well from a high-content screening plate, processed using Fractal.

There are 5 pyramid_levels available (0 to 4), meaning that in addition to the full resolution data (level 0), we have four more levels that provide the data in 2-fold lower resolutions (see pyramid_zyx_scalefactor), for example for faster plotting.

This OME-Zarr image also contains two segmentations (empty and nuclei), and for one measurements have been extracted and saved in the table nuclei. In addition, there are some further tables, such as FOV_ROI_table, which contains the coordinates of the fields of view, or nuclei_ROI_table, which contains the bounding box coordinates for the segmented nuclei.

Get information from img

You can obtain specific information on the content available in the image:

# path to the OME-Zarr image
img.get_path()
'20200812-CardiomyocyteDifferentiation14-Cycle1_mip.zarr/B/03/0'
# available channels
img.get_channels()
[{'color': '00FFFF',
  'label': 'DAPI',
  'wavelength_id': 'A01_C01',
  'window': {'end': 800, 'max': 65535, 'min': 0, 'start': 110}}]
# available labels
img.get_label_names()
['empty', 'nuclei']
# available tables
img.get_table_names()
['FOV_ROI_table',
 'expected_table_FOV_ROI_table_1_False_0_0',
 'expected_table_FOV_ROI_table_1_True_0_0',
 'expected_table_masked_nuclei_ROI_table_0_True_0_0',
 'expected_table_masked_nuclei_ROI_table_1_True_0_0',
 'expected_table_well_ROI_table_0_True_0_0',
 'expected_table_well_ROI_table_3_False_0_0',
 'expected_table_well_ROI_table_3_True_0_0',
 'nuclei',
 'nuclei_ROI_table',
 'well_ROI_table']
# zyx pixel spacing in micrometers for pyramid levels
# ... for images (channels, z, y, x)
img.get_scale(pyramid_level='0')
[1, 1.0, 0.1625, 0.1625]
# ... for labels (z, y, x)
img.get_scale(pyramid_level='0', label_name='nuclei')
[1.0, 0.65, 0.65]
# tree of folder and file structure in the zarr group
print(img.tree(expand=True, level=3))
/
 ├── 0 (1, 1, 2160, 5120) uint16
 ├── 1 (1, 1, 1080, 2560) uint16
 ├── 2 (1, 1, 540, 1280) uint16
 ├── 3 (1, 1, 270, 640) uint16
 ├── 4 (1, 1, 135, 320) uint16
 ├── labels
 │   ├── empty
 │   │   ├── 0 (1, 540, 1280) uint32
 │   │   ├── 1 (1, 270, 640) uint32
 │   │   ├── 2 (1, 135, 320) uint32
 │   │   ├── 3 (1, 67, 160) uint32
 │   │   └── 4 (1, 33, 80) uint32
 │   └── nuclei
 │       ├── 0 (1, 540, 1280) uint32
 │       ├── 1 (1, 270, 640) uint32
 │       ├── 2 (1, 135, 320) uint32
 │       ├── 3 (1, 67, 160) uint32
 │       └── 4 (1, 33, 80) uint32
 └── tables
     ├── FOV_ROI_table
     │   ├── X (2, 8) float32
     │   ├── layers
     │   ├── obs
     │   ├── obsm
     │   ├── obsp
     │   ├── uns
     │   ├── var
     │   ├── varm
     │   └── varp
     ├── expected_table_FOV_ROI_table_1_False_0_0
     │   ├── X (1504, 18) float32
     │   ├── layers
     │   ├── obs
     │   ├── obsm
     │   ├── obsp
     │   ├── uns
     │   ├── var
     │   ├── varm
     │   └── varp
     ├── expected_table_FOV_ROI_table_1_True_0_0
     │   ├── X (1504, 38) float32
     │   ├── layers
     │   ├── obs
     │   ├── obsm
     │   ├── obsp
     │   ├── uns
     │   ├── var
     │   ├── varm
     │   └── varp
     ├── expected_table_masked_nuclei_ROI_table_0_True_0_0
     │   ├── X (1493, 22) float32
     │   ├── layers
     │   ├── obs
     │   ├── obsm
     │   ├── obsp
     │   ├── uns
     │   ├── var
     │   ├── varm
     │   └── varp
     ├── expected_table_masked_nuclei_ROI_table_1_True_0_0
     │   ├── X (1493, 38) float32
     │   ├── layers
     │   ├── obs
     │   ├── obsm
     │   ├── obsp
     │   ├── uns
     │   ├── var
     │   ├── varm
     │   └── varp
     ├── expected_table_well_ROI_table_0_True_0_0
     │   ├── X (1493, 22) float32
     │   ├── layers
     │   ├── obs
     │   ├── obsm
     │   ├── obsp
     │   ├── uns
     │   ├── var
     │   ├── varm
     │   └── varp
     ├── expected_table_well_ROI_table_3_False_0_0
     │   ├── X (1493, 50) float32
     │   ├── layers
     │   ├── obs
     │   ├── obsm
     │   ├── obsp
     │   ├── uns
     │   ├── var
     │   ├── varm
     │   └── varp
     ├── expected_table_well_ROI_table_3_True_0_0
     │   ├── X (1493, 70) float32
     │   ├── layers
     │   ├── obs
     │   ├── obsm
     │   ├── obsp
     │   ├── uns
     │   ├── var
     │   ├── varm
     │   └── varp
     ├── nuclei
     │   ├── X (1493, 7) float32
     │   ├── layers
     │   ├── obs
     │   ├── obsm
     │   ├── obsp
     │   ├── uns
     │   ├── var
     │   ├── varm
     │   └── varp
     ├── nuclei_ROI_table
     │   ├── X (1493, 6) float32
     │   ├── layers
     │   ├── obs
     │   ├── obsm
     │   ├── obsp
     │   ├── uns
     │   ├── var
     │   ├── varm
     │   └── varp
     └── well_ROI_table
         ├── X (1, 6) float32
         ├── layers
         ├── obs
         ├── obsm
         ├── obsp
         ├── uns
         ├── var
         ├── varm
         └── varp

Extract a table from the OME-Zarr image

At the time of writing, tabular data is not yet covered in the NGFF standard. The tables stored within this OME-Zarr image are formatted as described in the Fractal documentation.

As mentioned the goal of ez_zarr is to abstract the internal structure and make it simple to obtain these tables as a pandas.DataFrame :

df = img.get_table(table_name='FOV_ROI_table')
df
FieldIndex x_micrometer y_micrometer z_micrometer len_x_micrometer len_y_micrometer len_z_micrometer x_micrometer_original y_micrometer_original
FOV_1 0 0 0 416 351 1 -1448.3 -1517.7
FOV_2 416 0 0 416 351 1 -1032.3 -1517.7

or anndata.AnnData object:

ann = img.get_table(table_name='FOV_ROI_table', as_AnnData=True)
ann
AnnData object with n_obs × n_vars = 2 × 8

Visualize the image

get_array_by_coordinate() extracts a rectangular region of interest from an image by coordinates. If no coordinates or other arguments are given, it returns the whole image at the lowest available resolution:

arr = img.get_array_by_coordinate()
print(arr.shape) # (ch, z, y, x)
(1, 1, 135, 320)

Such an image array can be easily plotted using matplotlib.pyplot.imshow:

with plt.style.context('dark_background'):
    fig = plt.figure(figsize=(4, 4))
    fig.set_dpi(100)

    plt.imshow(arr[0,0], cmap='gray', vmin=100, vmax=600)
    plt.title(img.name)
    plt.show()
    plt.close()

With plot(), ome_zarr.Image provides a convenient function for this that automatically extracts the well image and plots it. Because it has access to the image metadata, it can also add for example a scale bar:

img.plot(channels=[0],
         channel_colors=['white'],
         channel_ranges=[[100, 600]],
         title=img.name,
         scalebar_micrometer=150,
         scalebar_color='yellow',
         scalebar_position='topleft',
         scalebar_label=True,
         fig_width_inch=5,
         fig_height_inch=4,
         fig_dpi=100)

plot() uses internally ez_zarr.plotting.plot_image() which is a convenient wrapper around matplotlib.pyplot.imshow. plot_image() can also be used directly if you want to work with image arrays (for examples, see section “Working with segmentation masks” below).

Zoom in

Let’s first show the coordinate axes for our image:

img.plot(axis_style='micrometer',
         fig_width_inch=5,
         fig_height_inch=4,
         fig_dpi=100)

Now we can zoom in by coordinates:

img.plot(upper_left_yx=(130, 140),
         lower_right_yx=(300, 310),
         scalebar_micrometer=30,
         scalebar_color='magenta',
         fig_width_inch=5,
         fig_height_inch=5,
         fig_dpi=100)

So far, we have been automatically using the lowest resolution pyramid level version of the data, and the micrometer coordinates above have been automatically converted to the corresponding pixel coordinates.

If we want to get the same image region at a higher resolution, we can use the pyramid_level argument:

img.plot(pyramid_level=0,
         upper_left_yx=(130, 140),
         lower_right_yx=(300, 310),
         scalebar_micrometer=30,
         scalebar_color='magenta',
         fig_width_inch=5,
         fig_height_inch=5,
         fig_dpi=100)

You can see from the scale bar that again conversion from micrometer to pixel coordinates are performed automatically.

If you prefer to work with pixel coordinates, for example for slicing numpy arrays, get_array_by_coordinate or plot also support that.

Let’s first look at the full image at low resolution again, now using pixel coordinates for the axes:

img.plot(axis_style='pixel',
         fig_width_inch=5,
         fig_height_inch=4,
         fig_dpi=100)

Now we zoom in using pixel coordinates (coordinate_unit='pixel'):

img.plot(coordinate_unit='pixel',
         upper_left_yx=(50, 56),
         lower_right_yx=(115, 121),
         scalebar_micrometer=30,
         scalebar_color='magenta',
         fig_width_inch=5,
         fig_height_inch=5,
         fig_dpi=100)

Again, we were automatically using the lowest resolution of the image, and we can use pyramid_level to select a higher resolution. When working with pixel coordinates, we will need to specify that our coordinates still refer to the currently selected pyramid_level (4), in order to obtain the same region of the image. This can be done using the pyramid_level_coord argument:

img.plot(coordinate_unit='pixel',
         pyramid_level=0,       # extract image from this level
         pyramid_level_coord=4, # coordinates refer to this level
         upper_left_yx=(50, 56),
         lower_right_yx=(115, 121),
         scalebar_micrometer=30,
         scalebar_color='magenta',
         fig_width_inch=5,
         fig_height_inch=5,
         fig_dpi=100)

Coordinate conversions (usually done internally)

As mentioned the pixel coordinates depend on the pyramid_level. The image metadata makes it easy to convert between pixel coordinates and micrometer coordinates, or pixel coordinates referring to different pyramid levels. The get_array_by_coordinate and plot methods do this automatically.

You can do it also manually by using get_scale to obtain the pixel sizes (in micrometer) from the image metadata, and ez_zarr.utils.convert_coordinates to do the actual conversion:

# let's define some pixel coordinates referring to pyramid level 4
zyx_4 = (1, 230, 180)
print(f'starting coordinates (pixels in pyramid level 4): {zyx_4}')

# get pixel scale at pyramid level 4 (z, y, x)
s_4 = img.get_scale(pyramid_level=4, spatial_axes_only=True)
print(f'pixel scale (pyramid level 4, micrometer): {s_4}')

# convert from pyramid level 4 to 2
s_2 = img.get_scale(pyramid_level=2, spatial_axes_only=True)
print(f'pixel scale (pyramid level 2, micrometer): {s_2}')
zyx_2 = utils.convert_coordinates(coords_from=zyx_4,
                                  scale_from=s_4,
                                  scale_to=s_2)
print(f'starting coordinates converted to pyramid level 2 (pixel): {zyx_2}')

# convert from pixel to micrometers
# remark: scales are in micrometer -> the target scale is 1.0 for each axis
zyx_um = utils.convert_coordinates(coords_from=zyx_4,
                                   scale_from=s_4,
                                   scale_to=[1.0, 1.0, 1.0])
print(f'starting coordinates converted to micrometer: {zyx_um}')

# convert back from micrometers to pixels
zyx_px = utils.convert_coordinates(coords_from=zyx_um,
                                   scale_from=[1.0, 1.0, 1.0],
                                   scale_to=s_4)
print(f'starting coordinates converted back to pixel (pyramid level 4): {zyx_px}')
starting coordinates (pixels in pyramid level 4): (1, 230, 180)
pixel scale (pyramid level 4, micrometer): [1.0, 2.6, 2.6]
pixel scale (pyramid level 2, micrometer): [1.0, 0.65, 0.65]
starting coordinates converted to pyramid level 2 (pixel): (1.0, 920.0, 720.0)
starting coordinates converted to micrometer: (1.0, 598.0, 468.0)
starting coordinates converted back to pixel (pyramid level 4): (1.0, 230.0, 180.0)

These functions are also used by plot() internally to add a scale bar to the image plot, as we have seen above.

Working with segmentation masks

When segmentation masks (labels) are available, we can for example plot them with transparency on top of the image, by selecting the desired label using label_name:

img.plot(label_name='nuclei',
         pyramid_level=0,
         upper_left_yx=(130, 140),
         lower_right_yx=(300, 310),
         scalebar_micrometer=30,
         scalebar_color='white',
         fig_width_inch=5,
         fig_height_inch=5,
         fig_dpi=100)
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/ez_zarr/ome_zarr.py:865: UserWarning: For the requested pyramid level (0) of the intensity image, no matching label ('nuclei') is available. Up-scaling the label using factor(s) [1. 4. 4.]
  warnings.warn(f"For the requested pyramid level ({pyramid_level}) of the intensity image, no matching label ('{lname}') is available. Up-scaling the label using factor(s) {scalefact_yx}")

You may notice that the above will warn about no labels being available for the requested intensity image pyramid level. The plot method will automatically use the label with the closest resolution and scale it to match the intensity image.

For your convenience, it is also possible to specify multiple label names using a list (for example to reuse the same label name list when working with multiple images that have different labels). plot() will still only display a single label mask, namely the first one in the provided list that is available for the image (so the order of label names matters):

img.plot(label_name=['whole_cells', 'nuclei', 'mitochondria'],
         pyramid_level=0,
         upper_left_yx=(130, 140),
         lower_right_yx=(300, 310),
         scalebar_micrometer=30,
         scalebar_color='white',
         fig_width_inch=5,
         fig_height_inch=5,
         fig_dpi=100)
Using label_name='nuclei' for image cardio-d14

/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/ez_zarr/ome_zarr.py:865: UserWarning: For the requested pyramid level (0) of the intensity image, no matching label ('nuclei') is available. Up-scaling the label using factor(s) [1. 4. 4.]
  warnings.warn(f"For the requested pyramid level ({pyramid_level}) of the intensity image, no matching label ('{lname}') is available. Up-scaling the label using factor(s) {scalefact_yx}")

Using the show_label_values argument of plotting.plot_image, the label values can be added (optionally also using the label_fontsize and label_text_colour argument to ):

img.plot(show_label_values=True,
         label_fontsize='small',
         label_text_colour='white',
         label_name='nuclei',
         pyramid_level=0,
         upper_left_yx=(130, 140),
         lower_right_yx=(300, 310),
         fig_width_inch=5,
         fig_height_inch=5,
         fig_dpi=100)
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/ez_zarr/ome_zarr.py:865: UserWarning: For the requested pyramid level (0) of the intensity image, no matching label ('nuclei') is available. Up-scaling the label using factor(s) [1. 4. 4.]
  warnings.warn(f"For the requested pyramid level ({pyramid_level}) of the intensity image, no matching label ('{lname}') is available. Up-scaling the label using factor(s) {scalefact_yx}")

If you are interested in a specific object, you can pass its value to the label_value argument (and optionally use the extend_pixels and msk_alpha arguments), to automatically select appropriate coordinates:

img.plot(label_value=877,
         extend_pixels=10,
         msk_alpha=0.15,
         show_label_values=True,
         label_fontsize='xx-large',
         label_text_colour='black',
         label_name='nuclei',
         pyramid_level=0,
         fig_width_inch=5,
         fig_height_inch=5,
         fig_dpi=100)
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/ez_zarr/ome_zarr.py:865: UserWarning: For the requested pyramid level (0) of the intensity image, no matching label ('nuclei') is available. Up-scaling the label using factor(s) [1. 4. 4.]
  warnings.warn(f"For the requested pyramid level ({pyramid_level}) of the intensity image, no matching label ('{lname}') is available. Up-scaling the label using factor(s) {scalefact_yx}")

If you want to restrict the plot to the exact are within that specific object (or objects), you can use the restrict_to_label_values argument and provide a list of values:

img.plot(label_value=877,
         restrict_to_label_values=[877,914],
         extend_pixels=10,
         msk_alpha=0.15,
         show_label_values=True,
         label_fontsize='xx-large',
         label_text_colour='black',
         label_name='nuclei',
         pyramid_level=0,
         fig_width_inch=5,
         fig_height_inch=5,
         fig_dpi=100)
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/ez_zarr/ome_zarr.py:865: UserWarning: For the requested pyramid level (0) of the intensity image, no matching label ('nuclei') is available. Up-scaling the label using factor(s) [1. 4. 4.]
  warnings.warn(f"For the requested pyramid level ({pyramid_level}) of the intensity image, no matching label ('{lname}') is available. Up-scaling the label using factor(s) {scalefact_yx}")

Calculations on the image data

To save memory, images are stored on disk and only loaded when needed (for implementation details see the dask Array documentation).

This can be demonstrated by type(arr):

type(arr) # note that the image is an 'on-disk' array
zarr.core.Array

To force loading of the data into memory as a numpy array, you can call np.array(arr):

type(np.array(arr)) # triggers loading it into memory
numpy.ndarray

In general, you can use dask arrays like numpy arrays. For example, we can threshold the image:

# threshold (will also trigger loading into memory)
arr_mask = arr[0,0]>300
type(arr_mask)

# plot 
plotting.plot_image(im=arr[:,0], msk=arr_mask, msk_alpha=0.5,
                    fig_width_inch=6, fig_height_inch=6, fig_dpi=100)

This is of course not a recommended way to segment this image, but rather meant to demonstrate that the dask arrays can be used just like numpy arrays.

Session info

import session_info
session_info.show()
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/session_info/main.py:213: UserWarning: The '__version__' attribute is deprecated and will be removed in MarkupSafe 3.1. Use feature detection, or `importlib.metadata.version("markupsafe")`, instead.
  mod_version = _find_version(mod.__version__)
Click to view session information
-----
anndata             0.11.1
ez_zarr             0.3.5
matplotlib          3.8.2
numpy               1.26.4
pandas              2.2.3
requests            2.32.3
session_info        1.0.0
skimage             0.22.0
zarr                2.18.4
-----
Click to view modules imported as dependencies
PIL                         11.0.0
anyio                       NA
arrow                       1.3.0
asciitree                   NA
asttokens                   NA
attr                        24.3.0
attrs                       24.3.0
babel                       2.16.0
certifi                     2024.12.14
charset_normalizer          3.4.0
cloudpickle                 3.1.0
comm                        0.2.2
cycler                      0.12.1
cython_runtime              NA
dask                        2024.12.1
dateutil                    2.9.0.post0
debugpy                     1.8.11
decorator                   5.1.1
defusedxml                  0.7.1
executing                   2.1.0
fastjsonschema              NA
fqdn                        NA
fsspec                      2024.10.0
h5py                        3.12.1
idna                        3.10
importlib_metadata          NA
ipykernel                   6.29.5
isoduration                 NA
jedi                        0.19.2
jinja2                      3.1.4
json5                       0.10.0
jsonpointer                 3.0.0
jsonschema                  4.23.0
jsonschema_specifications   NA
jupyter_events              0.11.0
jupyter_server              2.14.2
jupyterlab_server           2.27.3
kiwisolver                  1.4.7
lazy_loader                 0.4
markupsafe                  3.0.2
matplotlib_inline           0.1.7
mpl_toolkits                NA
natsort                     8.4.0
nbformat                    5.10.4
numcodecs                   0.13.1
overrides                   NA
packaging                   24.2
parso                       0.8.4
platformdirs                4.3.6
prometheus_client           NA
prompt_toolkit              3.0.48
psutil                      6.1.0
pure_eval                   0.2.3
pydev_ipython               NA
pydevconsole                NA
pydevd                      3.2.3
pydevd_file_utils           NA
pydevd_plugins              NA
pydevd_tracing              NA
pygments                    2.18.0
pyparsing                   3.2.0
pythonjsonlogger            NA
pytz                        2024.2
referencing                 NA
rfc3339_validator           0.1.4
rfc3986_validator           0.1.1
rpds                        NA
scipy                       1.14.1
send2trash                  NA
six                         1.17.0
sniffio                     1.3.1
stack_data                  0.6.3
tabulate                    0.9.0
tlz                         1.0.0
toolz                       1.0.0
tornado                     6.4.2
traitlets                   5.14.3
typing_extensions           NA
uri_template                NA
urllib3                     2.2.3
wcwidth                     0.2.13
webcolors                   NA
websocket                   1.8.0
yaml                        6.0.2
zipp                        NA
zmq                         26.2.0
zoneinfo                    NA
-----
IPython             8.30.0
jupyter_client      8.6.3
jupyter_core        5.7.2
jupyterlab          4.3.4
notebook            7.3.1
-----
Python 3.11.11 (main, Dec  4 2024, 12:58:02) [GCC 11.4.0]
Linux-6.5.0-1025-azure-x86_64-with-glibc2.35
-----
Session information updated at 2024-12-19 16:31