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Overview

Motivation

* Introduction to Deep Learning* and High Level APIs for Deep Learning

* Brief demontration of model building with Keras

* Bias-variance decomposition, Representation Codes and DGN architectures

VAEs
GANs

* Applications in single cell-omics and existing tools
* Building, evaluating and using a VAE for single-cell data with Keras/tf

* Demontration of scvi tools usage



Why DGNs for transcriptomics ?

* DGNSs have the modelling capacity to capture and then be used for inference of very
complicated real-world distributions without* any domain-expert knowledge of the
underlying processes.

*  Why it this important?

- Often the underlying generative processes are poorly/incompletely understood: Explicitly
specifying fully parametrized functional forms for these distributions is impossible.

- Classical ML models operate in underparametrized settings that limit their modelling capacity

If we have in our hands a good* model of the generative process, several tasks become
possible in a unifying setting:

New instance generation, feature summarization and abstraction, classification, segmentation,
denoising/imputation/completion, out-of-sample prediction, integration and translation across
“styles”, batches, modalities.

Importantly in the modern setting DL models are specified and trained end-to-end.
Training instances > Model - Evaluation against a cost function



Is the use of DGNs in the context of SC analysis even necessary / over the top?
(DL for the sake of DL)

- It depends on the context:

When operating in the strict context of one/few datasets, one/few experiments and specific hypotheses then
"classical” approaches are just fine.

The advantage of DGNs comes when we are faced with problems that force us to move beyond the data at hand.
(working across modalities, inference across cellular or molecular contexts, prior knowledge integration, new
instance generation )

DL models are black boxes that curtail interpretability

- Not true. Several methods exist to look under-the-hood.

—> Interpretable features can be explicitly built in the model’s inductive bias .
- Sometimes interpretability is not of essence.

DGNs are over-parametrized, non generalizable overfitting machines.

—> This has been comprehensively refuted across multiple domains.
Modern ML theory has moved beyond the classical bias-variance tradeoff.



Why should I care?

It’s true that in simple SC analysis settings DL does not offer overwhelming advantages.
It is also true that the field is in a state of extreme flux which can be demoralizing:

A lot of “experimentation”, tough to keep-up, identify useful methods, benchmarking
and efforts to integrate in existing workflows are not where they should be.

But...

Experimental designs are becoming more intricate.

Integration of very diverse datasets/atlases, modalities is more and more common.

Interpretable models i.e putting SC experiments in the context of prior biological
knowledge ( gene pathways, disease, biological programs) are important.

Inference across cell types, states, is essential especially in R&D.



What is Deep Learning

Deep Learning Models take an input and transform it to an output via
successive layers of increasingly abstract and meaningful representations
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Figure 1.6 Deep representations learned by a digit-classification model

Image from F. Chollet’s “Deep Learning with R”

I What is a “meaningful representation” is a relative concept that depends on the task at hand

Why Deep? - Multi Layered Representation



The mechanics of model training

LLLLLLLL
\\»‘{/"\0‘/ = ¢
OO0
S - IR IR
OO0

X
ZROER
K

NAANEAN

The loss function measures the success of the model for the task
at hand.

The parameters (weights) of the model are updated towards a
“direction that provides an improvement

Updates are done using the backpropagation algorithm and the

chain rule that traverses the model from the output towards the Gradient Descent
. . iIlI)llt f (x) = nonlinear function of x
optimizer
..

The direction towards which the parameters need to move is
computed using Stochastic Gradient Descent (SGD) variants

Loss

This loop is repeated many times using small splits of the data
(batches)(epochs) until convergence



What spurred the revolution? Successes of Deep Learning




High level APIs for Deep Learning: Keras,
TensorFlow, Pytorch and beyond.

* TF is an open source general purpose numerical computing library (not only DL,
e.g general optimization libraries).

1F * Originally developed by engineers in the Google Brain Team for conducting ML
research
TensorFlow - nardware independent (CPUs, GPUs, TPUs)

* Supports large datasets/distributed execution

Multiple Deep Learning frameworks:

Keras as a high level API supports multiple DL backends: Chalnes @Xnet > Caffe?

SERa EMﬁo'i'K T TensorFlow [ Keras
SN @ciuon PYTHRCH  theano




The model building blocks in
Tensorflow/Keras/Pytorch

» Tensors are multidimensional arrays.

_ Tensor dimension R object

Cell label 1D (samples) vector

Gene Count Matrix 2D (samples, genes) matrix

Longitudinal data 3D (samples, genes, timestamp) 3d array

Microscopy Images 4D (samples, height, width, channels) 4d array
Video 5D (sample, height, width, channel, frame) 5d array

*Notice the orientation convention is opposite to what R users are used to

» Layers are units of numerical computations (transformation functions) applied
on tensors and parameterized by weights.
e.g addition, matrix multiplication, sampling, taking gradients...

* Layers and Tensors are combined to contruct computation graphs (DAGs).
Nodes are layers (computations), edges are Tensors.

Tensors “flow” through the computation graph and do smth useful (?).

A fully specified graph from input to output is a Model.

TensorFlow graph CC
by Tensorflow.org



https://www.tensorflow.org/guide/graphs

Keras

« Keras is a high level API that provides convenient wrappers for commonly
K Ke ra S used layers or computation graphs

A deep learning library

#defining a keras sequential model
model <- keras_model_sequential()

#defining the model with 1 input layer[784 neurons], 1 hidden layer[784 neurons] with dropout rate 0.4 and 1 output Input Hidden Layer Output
#i.e digits from 0 to 9 pixel 1— O
model $>% [ 7
layer_dense(units = 784, input_shape = 784, activation = 'relu') %>% g!"::g_’

IX¢ —
layer_dropout (rate=0.4) %>% pixel 6—
layer_dense(units = 10,activation = 'softmax') g:i::;:g

pixel 9—Q

pixel 10— Q.

pixel 11—O_
pixel 12— O
pixel 13— O _
pixel 14—O
pixel 15— O
pixel 16— O -
#defining model with one input layer[784 neurons], 1 hidden layer([784 neurons] with dropout rate 0.4 and 1 output 1, pixel 17—
model=Sequential() K :;::::g_,dé

O
O
O

O

O
O
O
O

pixel 20—

p t on from keras.layers import Dense pixel 84— O
model.add(Dense(784, input dim=784, activation='relu'))
keras.layers.core.Dropout(rate=0.4)

MLP model for digit classification

model.add(Dense(10,input_ dim=784,activation='softmax'))

_J0 forz<0 z-=Lfoi=1...Kandz=z c RK
f(l')—{m forz > 0 U( )l Z;ile:j T 3 ) (1) 1ZK)

relu activation sotfmax activation
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Error

Bias-Variance tradeoff

1 / < 5 . A F adiandl ¥
1 SN & So how do we increase the number of model
] J x parameters (p) while preventing overfitting?
N ¢

2 4 B & @ P e e * Increase training set (n >> p)

High variance, low bias,

poor generalization * Use regularization
Total Error (penalize for the number and/or for the magnitude

of the model parameters )

LASSO fit

Low variance, high bias

Underfitting

Overfitting

Variance

Optimum Model Complexity

S -
Model Complexity
Under-parameterized Over-parameterized

Expands the selection of model class while keeping the
“As the model capacity increases, so does its variance, its effective model complexity low
potential to overfit and its generalization error”



What are the mechanics that drive performance improvement
in the overparameterized regime?

Modern deep learning models are hugely overparameterized (p >> n)

Actually in several instances they appear to be completely overfitted
(even in the presence of noisy / mislabelled data)

However, their generalization performance is extremely good

under-parameterized over-parameterized

Test risk

“classical”
regime

“modern”
interpolating regime

~ Training risk:

.‘/interpolation threshold

Capacity of H
The “double descent” curve

* Variance appears to decrease with model complexity .
beyond the IP

* OQverfitting is not necessarily harmful

* Since the IP threshold is at p=n does that mean that in .
some cases more data can hurt us?

No violation of the spirit of bias-variance tradeoff. More complex models
DO have a higher variance upper-bound but that bound is not realized.

It’s the dynamics of the exploration of the optimization landscape by SGD
that lead to “smoother” solutions with low weight norms.

These solutions are more robust to input fluctuations and thus generalize
well

»
»

/ \/)"
Even in the cases of complete overfitting, the solutions are (benign)

Overparametrization is essential for “benign” overfitting.

This effect of the specific optimization procedure is referred to as
“implicit regularization”.

In a way analogous to classical regularization it expands the selection of
model class while keeping the effective model complexity (intrinsic
dimension) low.



Autoencoders: architecture and latent codes

Unsupervised (easy access to large training sets)

Obijective is to obtain an output that matches the input.

Data are “squeezed” through successive layers of
decreasing dimensions
The middle hidden layer is a code (latent code) that

represents the input:

Reconstructed

Original
mushroom

-

Encoder

Multiple AE flavors

Learned
~4 0 ‘| representation

Decoder

Deep/Stacked, Sparse, Variational, Denoising,
Adversarial, Disentangled...



Applications of AEs

1. Dimensionality reduction & visualization
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3. Feature manipulation , interpolation and exploration

-

Face without glasses

Multiple AE flavors

Subject

Deep/Stacked, Sparse, Variational, Denoising,

Adversarial, Disentangling...

Subject + Glasses

@ .

Tx data: High dimensional
— Visualization

2. Denoising & completion (imputation)

Face completion

Why AEs for SC transcriptomics?

Noisy/corrupt =
Denoising




Latent representations and “good” representation codes

The common goal it to obtain a good code representation of the input data

Corrupted input \ ’
\

* Robust to “meaningless” input corruptions

* Generalizable = can transfer to multiple settings /related problems

Smooth / Coherent: similar inputs +— similar codes.
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The latent representation is an estimation of the unerdlying
manifold that gives rise to the data

* Succinct, generative representations
of complex Tx manifolds.
 Each location in this manifold

represents a different realizable cell-

state

Trophectoderm

Ectoderm

A useful analogy:

®
Large jump
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Waddington landscape (1956) . o
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Common architectures in SC-omics 1: Variational Autoencoders

- VAEs generalize AEs adding stochasticity
- Encourage a continuous latent manifold
- Robustness + valid decoding

- Allows interpolation and exploration

@0

v
Sample

D. P. Kingma and M. Welling. “Auto-encoding variational Bayes”. arXiv:1312.6114, 2013.

o5

N
1
Ls :N Z (Eq[log p(2n2)] — B D1 (4(2]7n)llp(2))) The latent prior is a multivariate normal
= with a unit covariance matrix
Reconstruction Distance to latent prior

fp =1: ELBO (Evidence Lower Bound, standard VAE)

P < 1: Partially regularized VAE (Liang et al. 2018)
Most models used in SC-omics are

based on VAE with modifications in:
- The model inductive bias
- The optimization function

p > 1: Disentangling Autoencoders (f -VAE, Higgins et al. 2017)



Common architectures in SC-omics 2: Generative Adversarial Networks (GANSs)
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Y.Bengio. 'Generative adversarial nets ". In Advances in

neural information processing systems,2672-2680, 2014.

GANs have notoriously unstable training dynamics and suffer from what is known as “mode
collapse”, which leads to some modes of the data being overrepresented and others missing.

However, they are able to generate highly realistic “fake” samples



Questions so far?



Data visualization clustering and exploratory analysis
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Imputation and denoising

a O Data point without noise
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Article | Open Access | Published: 23 January 2019

Single-cell RNA-seq denoising using a deep count
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Gokcen Eraslan, Lukas M. Simon, Maria Mircea, Nikola S. Mueller & Fabian J. Theis

Nature Communications 10, Article number: 390 (2019) | Cite this article
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Batch correction, data harmonization integration of
heterogeneous scRNAseq data
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Deep generative modeling for single-cell
transcriptomics

Romain Lopez, Jeffrey Regier, Michael B. Cole, Michael I. Jordan & Nir Yosef &

Conditional Variational Autoencoders
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Nature Methods 16, 1139-1145 (2019) | Cite this article



Multimodal data integration

Cobolt: integrative analysis of multimodal single-cell
Cell Reports

MultiVI: deep generative model for the integration of sequencing data
Methods .
multi-modal data
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Multimodal single cell data integration challenge: results and lessons

NeurlPS 2021 ledinad

https://www.biorxiv.org/content/10.1101/2022.04.11.487796v1 .full

Bechmarking datasets:
CITE-seq (GEX + ADT): 90K cells

10x Multiome (ATACseq + GEX): 70k cells

* Task 1: Cross-modal prediction (predict one modality from another) CLUE (Winner of all subtasks)
Most high scoring taks were DGN-based. Relatively poor performance et e s
especially in the GEX2ATAC, ATAC2GEX regime. "(""’”
quylx;) | e
* Task 2: Match cells between modalities (cell-alignment) <

One clear winner across all subtasks (Cross-linked universal embedding, CLUE):

VAE with a shared embedding resulting from concatenation of modality-specific subspaces.
q(u, Ix ) §

* Task 3: Learn joint representations (manifold alignment) n "z -~

Joint embedding with a regularized autoencoder (JAE)

q(uylx;) |



Automatic annotation of single cell data

scANVI scArches

A Functional overview
a
Core analysis tool: scVI Extends to Annotation tool: scANVI
— Public reference datasets
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Probabilistic harmonization and annotation of single- Mapping Single-ce“ data to reference atlases by
cell transcriptomics data with deep generative transfer learning

models

Mohammad Lotfollahi, Mohsen Naghipourfar, Malte D. Luecken, Matin Khajavi, Maren Biittner, Marco

Chenling Xu®,Romain Lopez &,Edouard Mehlman @, Jeffrey Regier ©@,Michael | Jordan ©®, .
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Author Information

Mol Syst Biol (2021) 17: €9620 https://doi.org/10.15252/msb.20209620



Interpretable models
(contextualize relative to prior biological knowledge e.g gene pathways, disease, biological programs)
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DGN-based out-of-distribution inference on SC data

DGN based inference allows inspection of regions of the Tx landscape that have not been visited

Some examples:

Inferring transcriptomes upon biological perturbations (e.g in Silico KDs)

Inferring effects of perturbations in different cell /tissue contexts (out-of-sample prediction)

Inferring trajectories

scGen predicts single-cell perturbation

responses
Mohammad Lotfollahi, F. Alexander Wolf &1 & Fabian J. Theis &

Nature Methods 16, 715-721(2019) | Cite this article
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perturbed
ALAT Colls (p=1)

E

decode
estimate perturbation

ﬁ;.

apply &

Conditional out-of-distribution generation for

unpaired data using transfer VAE @

Mohammad Lotfollahi, Mohsen Naghipourfar, Fabian J Theis &, F Alexander Wolf &

Bioinformatics, Volume 36, Issue Supplement_2, December 2020, Pages i610-i617,

https://doi.org/10.1093/bioinformatics/btaa800
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Generative adversarial networks uncover epidermal
regulators and predict single cell perturbations

Arsham Ghahramani, Fiona M. Watt, Nicholas M. Luscombe
doi: hteps://doi.org/10.1101/262501

Unseen cells




Other applications

Deconvolution of spatial transcriptomics data (Stereoscope, DestVI)
Analysis of scATACseq data (peakVI)

Doublet detection in scRNAseq data (Solo)

Analysis of CITE-seq data (totalVI)

Assessing gene specific levels of zero inflation (AutoZi)

Gene regulatory networks inference (KPNNs)

Deconvolution of bulk RNAseq data using scRNAseq atlases

Rare cell detection

In silico generation of datasets / data augmentation



scvi tools

A Pythonlibrary for probabilistic analysis of single-cell

omics data

Adam Gayoso, Romain Lopez, ... Nir Yosef
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Single-cell omics data

RNA-seq CITE-seq .
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ATAC-seq
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QC and preprocessing

Probabilistic analysis

Downstream inspection

o

scvi-tools 3
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Dimensionality reduction

Removal of unwanted variation
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Doublet detection
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Singlet ,’boublet

Differential comparison
— Group A
Group B

Expression
Deconvolution

Factor analysis

Factor 5 Factor 5

Score

Automated annotation

Assignment probability

Transfer learning

Train 3
—

Update /

Modality imputation

Predict missing modality
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Consistent user experience

= scvi.data.read h5ad ("pbmc.h5ad")
scvi.model.SCVI.setup anndata (adata)
model = scvi.model.SCVI (adata)

model. train ()

latent = model.get latent represente
de df = model.differential expression (
groupby="cell_type",
groupl="CD4",
group2="CD8",
)
norm = model.get_normalized_expression ()
model.save ("save_dir")
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Summary/Perspectives

Despite the multitude of publications on DL in sc-omics the underlying principles are and used
main architectures are relatively few.

The field is very dynamic and fast growing. Can be tough to keep-up / identify important contributions
Many applications are not conceptual shifts but rather provide alternative implementations to
problems that already heave counterparts using different algorithimic approaches.

DGNs excel in generalization/abstraction/contextualization/new instance generation/inference/modality integration

Some upcoming trends:

Methodology article | Open Access | Published: 08 July 2021

Single-cell classification using graph convolutional

Geometric deep learning/structured learning: Graph convolutional networks ok Eickegiealy tofarreferle (150 K i o i
. . L. . . . . . . Tianyu Wang, Jun Bai & Sheida Nabavi = I ing dat
Allows for integration of existing biological knowledge in the network’s inductive bias. ssssms s s s s Seie =
Sparser networks, more accurate representations s 2020 Ganome By 7101
DOI:10.1186/s13059-020-02100-5

Perspective

Perturbation atlases combined with the representational capacity of DGNs hold the promise of more compreh, ., 1. . learning for perturbational
mapping out of the regulatory manifold. single-cell omics
Perturbation response prediction, Target and mechanism prediction, Prediction of combinatorial perturbation €,., .. ... e s sy et 2.5



