
Deep	Generative	Networks	and	Variational	inference	
in	Single	Cell	Genomics

Panagiotis	Papasaikas

FMI	Computational	Biology

Advanced	SC course,		Basel,	29-04-2022

Overview

• Motivation

• Introduction	to	Deep	Learning* and High	Level	APIs	for	Deep	Learning

• Brief demontration of model building with	Keras

• Bias-variance	decomposition,	Representation	Codes	and	DGN	architectures
VAEs
GANs

• Applications		in	single	cell-omics	and	existing	tools

• Building,	evaluating	and	using	a	VAE	for	single-cell	data	with	Keras/tf

• Demontration	of	scvi	tools	usage

Why	DGNs	for	transcriptomics	?

• DGNs	have	the modelling	capacity	to capture	and	then be	used	for	inference	of very	
complicated	real-world	distributions	without*	any	domain-expert	knowledge	of	the	
underlying	processes.

• Why	it	this	important?

- Often	the	underlying generative	processes are poorly/incompletely	understood:	Explicitly	
specifying	fully	parametrized	functional	forms	for	these	distributions	is	impossible.

- Classical	ML	models	operate	in	underparametrized	settings	that	limit	their	modelling	capacity

- If	we	have	in	our	hands	a	good*	model	of	the	generative	process,	several	tasks	become	
possible	in	a	unifying	setting:

New	instance	generation,	 feature	summarization	and	abstraction,	classification,	segmentation,	
denoising/imputation/completion,	out-of-sample	prediction,	integration	and	translation	across	
“styles”,	batches,	modalities.

Importantly	in	the	modern	setting	DL	models	are	specified	and	trained	end-to-end.
Training instancesàModelà Evaluation against a cost function

Is	the use of DGNs in the	context	of	SC	analysis	even	necessary	/	over	the	top?
(DL	for	the	sake	of	DL)

à It	depends on the context:

When	operating in the strict context	of	one/few	datasets,	one/few	experiments	and	specific	hypotheses	then	
”classical”	approaches	are	just	fine.		
The advantage of DGNs	comes	when	we	are	faced	with	problems	that	force	us	to	move	beyond	the	data	at	hand.	
(working	across	modalities,	inference	across	cellular	or	molecular	contexts,	prior	knowledge	integration,	new	
instance	generation)

DL models are black boxes that curtail interpretability

à Not	true.	Several	methods	exist	to	look	under-the-hood.	
à Interpretable	features	can	be	explicitly	built	in	the	model’s	inductive	bias	.
à Sometimes interpretability is not	of	essence.	

DGNs	are	over-parametrized,	non	generalizable	overfitting	machines.

à This	has	been	comprehensively	refuted	across	multiple	domains.	
Modern	ML	theory	has	moved	beyond	the	classical	bias-variance	tradeoff.

Why	should	I	care?

It’s	true	that	in	simple	SC	analysis	settings	DL	does	not	offer	overwhelming	advantages.

It	is	also	true	that	the	field	is	in	a	state	of	extreme	flux	which	can	be	demoralizing:
A	lot	of	“experimentation”,		tough	to	keep-up,	identify	useful	methods,	benchmarking	
and	efforts	to	integrate	in	existing	workflows	are	not	where	they	should	be.

But…

Experimental	designs	are	becoming	more	intricate.	

Integration of very diverse datasets/atlases,	modalities	is	more	and	more	common.

Interpretable	models	i.e	putting	SC	experiments	in	the	context	of	prior	biological	
knowledge	(gene	pathways,	disease,	biological	programs)	are	important.

Inference across	cell	types,	states,		is	essential	especially	in	R&D.

What	is	Deep	Learning

Deep	Learning	Models	take	an	input	and	transform	it	to	an	output	via	
successive	layers	of	increasingly	abstract	and	meaningful	representations

Raw	data Extraneous	information
filtered,	useful	information	extracted Image	from	F.	Chollet’s	“Deep	Learning	with	R”

!!!	What	is	a	“meaningful	representation”	is	a	relative	concept	that	depends	on	the	task	at	hand

Why	Deep?	à Multi	Layered	Representation

The	mechanics	of	model	training	

The	loss	function	measures	the	success	of	the	model	for	the	task	
at	hand.

The	parameters	(weights)	of	the	model		are	updated	towards	a	
direction	that	provides	an	improvement

Updates	are	done	using	the	backpropagation algorithm	and	the	
chain	rule	that	traverses	the	model	from	the	output	towards	the	
input

The	direction	towards	which	the	parameters	need	to	move	is	
computed	using	Stochastic	Gradient	Descent	(SGD)	variants

This	loop	is	repeated	many	times	using	small	splits	of	the	data	
(batches)(epochs)	until	convergence

optimizer

Successes	of	Deep	Learning

• Refined	web-searching
• Spam/Fraud	detection
• Near-human	image	classification	(MSRA,	ImageNET)
• Near-human	machine	translation	(DeepL)
• Superhuman	chess/GO	playing	(AlphaZero,	LC0)
• Autonomous	driving
• Natural	language	processing	(e.g	IBM	debater,	GPT-x,	

PALM,	Chinchilla)

• Protein	Folding	(AlphaFold)
• Medical	Image	Processing
• Drug	design
• Diagnostics

Mainly	advances	on	three	fronts:

• Massively	parallel	computation	hardware	(GPUs,	TPUs)

• Improved	algorithms	
robust	backprop,	optimizers,	regularization	techiniques

• Large,	high-quality	(often	labeled)	datasets
web	usage,	advances	in	tech/instrumentation	in	hard	sciences

Improved	architectures

User-friendly	platforms

What	spurred	the	revolution?

High	level	APIs	for	Deep	Learning:	Keras,	
TensorFlow,	Pytorch	and	beyond.

Keras as	a	high	level	API	supports	multiple	DL	backends:

Multiple	Deep	Learning	frameworks:

• TF	is	an	open	source	general	purpose	numerical	computing	library	(not	only	DL,	
e.g	general	optimization	libraries).

• Originally	developed	by	engineers	in	the	Google	Brain	Team	for	conducting	ML	
research

• Hardware	independent	(CPUs,	GPUs,	TPUs)
• Supports	large	datasets/distributed	execution

The	model	building	blocks	in	
Tensorflow/Keras/Pytorch

• Tensors are	multidimensional	arrays.
Data Tensor dimension R object

Cell label 1D (samples) vector

Gene Count Matrix 2D (samples, genes) matrix

Longitudinal data 3D (samples, genes, timestamp) 3d array

Microscopy Images 4D (samples, height, width, channels) 4d array

Video 5D (sample, height, width, channel, frame) 5d array

*Notice	the	orientation	convention	is	opposite	to	what	R	users	are	used	to

• Layers are	units	of	numerical	computations	(transformation	functions)	applied	
on	tensors	and	parameterized	by	weights.

e.g	addition,	matrix	multiplication,	sampling,	taking	gradients…

• Layers	and	Tensors	are	combined	to	contruct	computation	graphs (DAGs).	
Nodes	are	layers	(computations),	edges	are	Tensors.	
Tensors	“flow”	through	the	computation	graph	and	do	smth	useful	(?).
A	fully	specified	graph	from	input	to	output	is	a	Model.

TensorFlow	graph	CC
by Tensorflow.org

https://www.tensorflow.org/guide/graphs

Keras

• Keras is	a	high	level	API	that	provides	convenient	wrappers		for	commonly	
used	layers	or	computation	graphs

sotfmax activationrelu activation

Input Hidden Layer Output

MLP	model	for	digit	classification

𝑥 → 𝑦

Train Test

x’
x’
x’

;𝑦 ;𝑦 ;𝑦

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟≃ 𝑌! − o𝑌

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 = 𝐵𝑖𝑎𝑠𝐸𝑟𝑟𝑜𝑟 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐸𝑟𝑟𝑜𝑟 + 𝐼𝑟𝑟𝑒𝑑. 𝐸𝑟𝑟𝑜𝑟 (𝐵𝑎𝑦𝑒𝑠𝐸𝑟𝑟𝑜𝑟)

Modelling assumptions
(too rigid)

High sensitivity
(not rigid enough)

Noise

F(x)

High bias High variance

High Training Error Bias (Underfitting)

Low Training Error
High Test Error

Variance (Overfitting
/ Loss of Generalization)

Only Irred. Error Bayes limit

Bias-Variance decomposition

Bias-Variance tradeoff

Too few parameters Too many parameters“Just right”

“As the model capacity increases, so does its variance, its
potential to overfit and its generalization error”

Low variance, high bias
High variance, low bias,

poor generalization

Underfitting Overfitting

Over-parameterizedUnder-parameterized

So how do we increase the number of model
parameters (p) while preventing overfitting?

• Increase training set (n >> p)

• Use regularization
(penalize for the number and/or for the magnitude
of the model parameters)

Expands the selection of model class while keeping the
effective model complexity low

• No violation of the spirit of bias-variance tradeoff. More complex models
DO have a higher variance upper-bound but that bound is not realized.

• It’s the dynamics of the exploration of the optimization landscape by SGD
that lead to ”smoother” solutions with low weight norms.

• These solutions are more robust to input fluctuations and thus generalize
well

• Even in the cases of complete overfitting, the solutions are (benign)

• Overparametrization is essential for “benign” overfitting.

• This effect of the specific optimization procedure is referred to as
“implicit regularization”.

• In a way analogous to classical regularization it expands the selection of
model class while keeping the effective model complexity (intrinsic
dimension) low.

What are the mechanics that drive performance improvement
in the overparameterized regime?

The “double descent” curve

• Variance appears to decrease with model complexity
beyond the IP

• Overfitting is not necessarily harmful

• Since the IP threshold is at p=n does that mean that in
some cases more data can hurt us?

• Modern deep learning models are hugely overparameterized (p >> n)

• Actually in several instances they appear to be completely overfitted
(even in the presence of noisy / mislabelled data)

• However, their generalization performance is extremely good

• Unsupervised	(easy	access	to	large	training	sets)

• Objective	is	to	obtain	an	output	that	matches	the	input.

• Data	are	“squeezed”	through	successive	layers	of	

decreasing	dimensions

• The	middle	hidden	layer	is	a	code (latent	code)	that	

represents the	input:

Autoencoders:	architecture	and	latent	codes	

Multiple	AE	flavors
Deep/Stacked,	Sparse,	Variational,	Denoising,	
Adversarial,	Disentangled…

2.	Denoising &	completion	(imputation)

3.	Feature	manipulation	,	interpolation	and	exploration

Applications	of	AEs

Why	AEs	for	SC	transcriptomics?
Tx data:						High	dimensional						Noisy/corrupt	➞
➞ Visualization							 Denoising

1.	Dimensionality	reduction	&	visualization

Subject	+	GlassesSubject

Digit	Denoising

Face	completion

Multiple	AE	flavors
Deep/Stacked,	Sparse,	Variational,	Denoising,	
Adversarial,	Disentangling…

The	common	goal	it	to	obtain	a	good	code	representation	of	the	input	data

• Smooth	/	Coherent:		similar	inputs		⟼		similar	codes.

• Generalizable			⇒	can	transfer	to	multiple	settings	/related	problems	

• Explanatory		

Latent	representations	and	“good”	representation	codes

• Robust	to	“meaningless”	input	corruptions

The	latent	representation	is	an	estimation	of	the	unerdlying	
manifold that	gives	rise	to	the	data

Waddington	landscape	(1956)

• Succinct,	generative	representations	

of	complex	Tx	manifolds.

• Each	location	in	this	manifold	

represents	a	different	realizable	cell-

state

A useful analogy:

Reconstruction Distance	to	latent	prior

• β =	1	:		ELBO	(Evidence	Lower	Bound,	standard	VAE)

• β <	1	:		Partially	regularized	VAE	(Liang	et	al.	2018)

• β >	1	:		Disentangling	Autoencoders (β –VAE,	Higgins	et	al.	2017)

- VAEs	generalize	AEs	adding	stochasticity
- Encourage	a	continuous	latent	manifold	
- Robustness	+	valid	decoding
- Allows	interpolation	and	exploration

Common	architectures	in	SC-omics	1:	Variational	Autoencoders

The	latent	prior	is	a	multivariate	normal
with	a	unit	covariance	matrix

D.	P.	Kingma and	M.	Welling.	“Auto-encoding	variational	Bayes”.	arXiv:1312.6114,	2013.

Most models used in SC-omics are
based on VAE with modifications in:
- The model inductive bias
- The optimization function

GANs have notoriously unstable training dynamics and suffer from what is known as “mode
collapse”, which leads to some modes of the data being overrepresented and others missing.

However, they are able to generate highly realistic “fake” samples

I.	Goodfellow,	J.Pouget-Abadie,	M.Mirza,	B.Xu,	D.Warde-Farley,	S.	Ozair,	A.Courville,	and	
Y.Bengio.’	’Generative	adversarial	nets	’’.	In	Advances	in
neural	information	processing	systems,2672-2680,	2014.

Common	architectures	in	SC-omics	2:	Generative Adversarial Networks (GANs)

Questions so far?

Data	visualization	clustering	and	exploratory	analysis

Latent Encoding

Gene Space Gene Space

Imputation	and	denoising

• gimVI
• DeepImpute

• ScImpute
• Deep	Count	Autoencoder	(DCA)

Batch	correction,	data	harmonization	integration	of	
heterogeneous	scRNAseq	data	

• SAUCIE
• scVI/scARCHES
• MAGAN
• CarDEC	

encoder decoder

Mean	Vector	of
samples	in	study	A

Mea
n	Ve

ctor	
of

sam
ples	

in	st
udy	

B Delta	AB

Delta	AB

Vector	of	individual
sample	Ai from	study	A

Vecto
r	Ai’

trans
lated

	to	st
udy

B Predicted
Gene	Expr.
for	sample Ai
in	study	B

calculate	delta	vector
for	batch	variance

apply	delta	vector	to	individual
Samples	of	one	study

decode	translated	latent
vectors	back	to	gene	space

Latent	Space Gene	Space

decoding

Laten arithmetic based

Conditional Variational Autoencoders
Style transfer

Multimodal	data	integration

NeurIPS 2021

Bechmarking datasets:
CITE-seq (GEX + ADT): 90K cells
10x Multiome (ATACseq + GEX): 70k cells

• Task 1: Cross-modal prediction (predict one modality from another)
Most high scoring taks were DGN-based. Relatively poor performance
especially in the GEX2ATAC, ATAC2GEX regime.

• Task 2: Match cells between modalities (cell-alignment)
One clear winner across all subtasks (Cross-linked universal embedding, CLUE):
VAE with a shared embedding resulting from concatenation of modality-specific subspaces.

• Task 3: Learn joint representations (manifold alignment)
Joint embedding with a regularized autoencoder (JAE)

https://www.biorxiv.org/content/10.1101/2022.04.11.487796v1.full

Automatic	annotation	of	single	cell	data

scANVI scArches

expiMap

Interpretable	models	
(contextualize	relative	to	prior	biological	knowledge	e.g	gene	pathways,	disease,	biological	programs)	

DGN-based		out-of-distribution	inference	on	SC	data

DGN	based	inference	allows	inspection	of	regions	of	the	Tx	landscape	that	have	not	been	visited

Some	examples:

• Inferring	transcriptomes	upon	biological	perturbations	(e.g in	Silico	KDs)

• Inferring	effects	of	perturbations	in	different	cell/tissue	contexts	(out-of-sample	prediction)

• Inferring	trajectories

Other	applications	

• Deconvolution	of	spatial	transcriptomics	data	(Stereoscope,	DestVI)
• Analysis	of	scATACseq	data	(peakVI)
• Doublet	detection	in	scRNAseq	data	(Solo)

• Analysis	of	CITE-seq	data	(totalVI)	
• Assessing	gene	specific	levels	of	zero	inflation	(AutoZi)
• Gene	regulatory	networks	inference	(KPNNs)	

• Deconvolution	of	bulk	RNAseq	data	using	scRNAseq	atlases

• Rare	cell	detection
• In	silico	generation	of	datasets	/	data	augmentation

scvi tools

https://scvi-tools.org/

https://scvi-tools.org/

Summary/Perspectives
Despite the multitude of publications on DL in sc-omics the underlying principles are and used
main architectures are relatively few.

The field is very dynamic and fast growing. Can be tough to keep-up / identify important contributions

Many applications are not conceptual shifts but rather provide alternative implementations to
problems that already heave counterparts using different algorithimic approaches.

DGNs excel in generalization/abstraction/contextualization/new instance generation/inference/modality integration

Some upcoming trends:

Geometric deep learning/structured learning: Graph convolutional networks
Allows for integration of existing biological knowledge in the network’s inductive bias.
Sparser networks, more accurate representations

Perturbation atlases combined with the representational capacity of DGNs hold the promise of more comprehensive
mapping out of the regulatory manifold.
Perturbation response prediction, Target and mechanism prediction, Prediction of combinatorial perturbation effects.

